Application Note

Complete Workflow for the Analysis of California List of Pesticides in Cannabis

Detailed protocols for sample preparation and analysis of pesticides by LC-MS/MS and GC-MS/MS.

Geoffrey Rule PhD¹, Rafael Acosta², Chris Leija PhD², Romana Rigger PhD³, Stephan Altmaier⁴, Uma Sreenivasan PhD²

1.0 Introduction: Analysis of pesticides in cannabis

Recreational cannabis use has been legalized in 11 states and the District of Columbia with an additional 22 states allowing the use of medical marijuana.

This has led to mandatory testing for growers and processors of cannabis, and its derivative products, to show product safety according to the requirements of individual states. One of the requirements includes the testing of cannabis flowers for the presence of pesticides. This application note demonstrates the use of Supelco[®] analytical standards, instrument consumables, and reagents to analyze low levels of pesticides in cannabis and, in particular, the 66 pesticides required by the State of California.

Following are the current (April 2020) cannabis pesticide requirements as per the State of California:

There are 21 pesticides listed under category I and which do not have any allowable level. Methods must demonstrate the limit of detection (LOD) for these compounds and their LODs must be at least 0.1 μ g/g (or lower limits for inhalable cannabis goods). Any detection of these pesticides causes the rejection of products.

¹Bellefonte, PA USA ²Round Rock, TX, USA ³Buchs, Switzerland ⁴Darmstadt, Germany Category II includes 45 pesticides having prescribed action levels. The action levels differ for category II pesticides and depend on whether the product is an inhalable cannabis good or another product form. These pesticides must be below the prescribed action level in order for the product to be accepted.

In this workflow we present:

- Complete details for the analysis of California pesticides by GC-MS/MS and LC-MS/MS
- Step-by-step procedures for calibrator and sample preparation
- Methods for evaluation of suppression and extraction recovery
- Instructions for preparation and use of analyte protectants in GC-MS/MS

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

2.0 Preparation of sample and calibration standards

2.1 Pesticide standard working solution (WS) preparation

Calibration curves can be prepared using either a blank matrix extract that has gone through the extraction procedure, or pure solvent. They can also be prepared by "spiking" plant material with a pesticide working solution (WS) in order to best imitate an actual plant sample. It is often desirable to perform each of these types of calibration experiments for different purposes, and the schemes outlined are provided for this purpose. The sets of calibration standards are then used for the evaluation of suppression or enhancement effects and for determining extraction recovery with a set of plant samples spiked prior to extraction.

Step Standard Working Solution Preparation

- Prepare a 1 mL solution of a mix of 66 regulated pesticides at 100 (WS1), 10 (WS2) and 1 (WS3) µg/mL in LC-MS grade acetonitrile. Use positive displacement pipettors to ensure accuracy with organic solvents.
- 2 Ensure that the solution is prepared in an amber volumetric flask as some pesticides are photosensitive and degrade with exposure to light.
- 3 Ensure that working and stock solutions are stored in a subzero freezer when not in use and with minimal exposure to the environment.

2.2 Sample preparation

Step	Sample Preparation Instructions
1*	Weigh 1.0 \pm 0.02 of cannabis sample and transfer into a 50 mL polypropylene centrifuge tube
2	Add homogenization beads, as appropriate for laboratory equipment.
3*	Add 15 mL of LC-MS grade acetonitrile (ACN) and cap
4	Shake the tube for 5-10 min on a vertical shaker at high speed
5	Prepare tube rack with C18 500 mg SPE cartridges (6 mL) and 50 mL centrifuge tubes for collection
6	Add supernatant from step 4 to C18 SPE cartridge and allow it to pass through by gravity (if necessary use vacuum or positive pressure manifold)
7	Add 5 mL of additional ACN to the tube from step 4 and shake for 3-5 min at high speed
8	Transfer supernatant to SPE cartridge
9	Repeat step 7 with 5 mL of ACN and, again, pass through SPE cartridge.
10	Bring final volume of centrifuge tube to 25 mL with ACN
*Noto	If proparing calibration standards in plant. Working Solutions

*Note If preparing calibration standards in plant, Working Solutions can be added at step 1 or 3 above and as shown in Scheme I.

2.3 Preparation of plant-based calibration standards (Scheme I)

2.3.1 Pre-extraction spiked calibration standards

Cal Level	µg/g in hemp	µL of Working Solution	Solution
Cal 1	0.02	20	WS3
Cal 2	0.05	50	WS3
Cal 3	0.1	10	WS2
Cal 4	0.2	20	WS2
Cal 5	0.5	50	WS2
Cal 6	1	10	WS1
Cal 7	1.5	15	WS1
Cal 8	3	30	WS1
Cal 9	5	50	WS1

Working solution (WS1): 100 $\mu g/mL$ combined pesticides in LC-MS grade acetonitrile

Working solution (WS2): 10 $\mu\text{g/mL}$ combined pesticides in LC-MS grade acetonitrile

Working solution (WS3): 1 $\mu\text{g/mL}$ combined pesticides in LC-MS grade acetonitrile

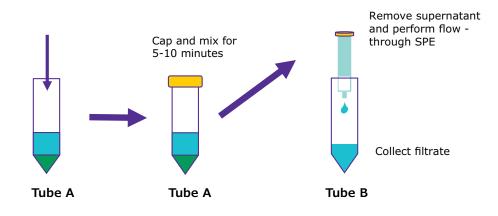
How to prepare calibration standard solution example:

To make Cal 9 add 50 μL of WS1 solution as shown in step 1 (or 3) of sample preparation instructions (shown in 2.2 above)

2.3.2 Post-extraction spiked and solvent calibration standards

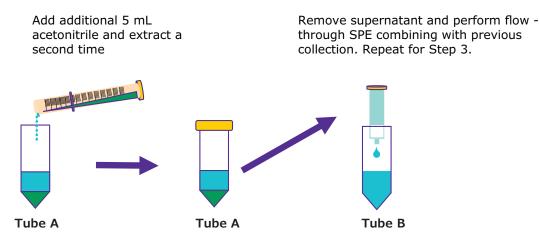
(Scheme II)

This scheme is used to prepare a set of calibration standards in either pure solvent or in a matrix extract that has been collected from blank, analyte free plant material

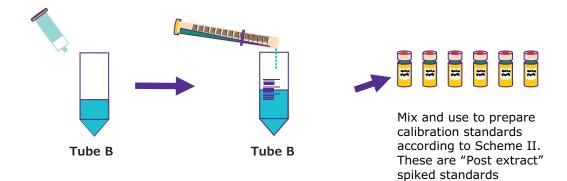

Level	Conc. in Hemp Flower ug/g	Conc. in 25 mL Extract ng/mL	μL	Solution	µL Blank Matrix Extract
Cal 1	0.02	0.8	50	Cal 4	450
Cal 2	0.05	2	10	Cal 9	990
Cal 3	0.1	4	20	Cal 9	980
Cal 4	0.2	8	40	Cal 9	960
Cal 5	0.5	20	50	Cal 9	450
Cal 6	1	40	100	Cal 9	400
Cal 7	1.5	60	6	WS2	994
Cal 8	3	120	12	WS2	988
Cal 9	5	200	20	WS2	980

Working solution (WS2): 10 $\mu\text{g/mL}$ Combined pesticides in LC-MS grade acetonitrile

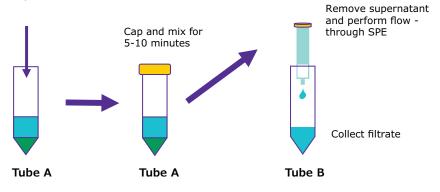
To make Cal 9 take 20 μ L of WS2 solution and add 980 μ L of blank matrix extract, or acetonitrile, in a 2 mL amber autosampler vial To make Cal 5 take 50 μ L of Cal 9 solution and add 450 μ L of blank matrix extract, or acetonitrile, in a 2 mL amber autosampler vial To make Cal 1 take 50 μ L of Cal 4 solution and add 450 μ L of blank matrix extract, or acetonitrile, in a 2 mL amber autosampler vial


Scheme I

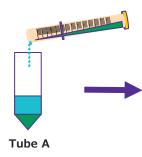
Step 1


Extraction solvent added to 1g dried, powdered cannabis

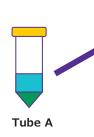
Steps 2 and 3


Discard SPE tube and bring volume up to 25 mL with acetonitrile.

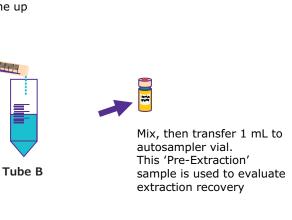
Scheme II


Step 1

WS added to tube with 1g dried, powdered cannabis as in Scheme I. One tube per Calibration Standard


Steps 2 and 3

Add additional 5 mL acetonitrile and extract a second time



Step 4

Tube B

Remove supernatant and perform flow-through SPE combining with previous collection. Repeat for Step 3.

Tube B

Discard SPE tube and bring volume up to 25 mL with acetonitrile.

3 Evaluation of suppression and extraction recovery using pre-extraction, post-extraction, and solvent standards

An ideal calibration curve is generated using a set of calibration standards prepared in pure acetonitrile and against which the suppression/enhancement and extraction recovery studies are performed. The calibration standards are prepared as shown in scheme II.

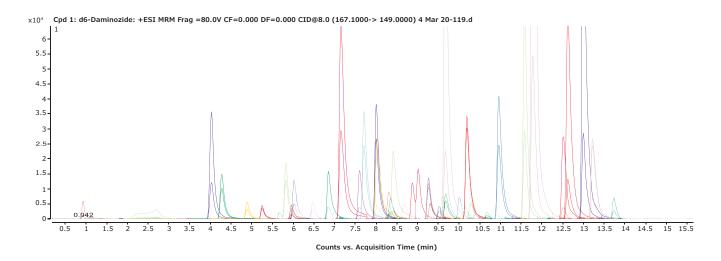
To evaluate suppression and enhancement effects a set of calibrators are prepared from a "post-extraction" sample, as shown in scheme II. For this preparation a "blank" or "control matrix" of analyte free cannabis is taken through the sample preparation procedure before adding the pesticide working solution. A comparison of the "post extract" regression (calibration curve) with the regression performed in pure acetonitrile allows the evaluation of either suppression or enhancement effects. Note that suppression or enhancement effects can occur with both GC-MS and LC-MS instrumentation although the causes are somewhat different. The study of these effects can provide insight into possible remedies that may be used to improve assay performance.

To evaluate "extraction recovery" a set of plantbased calibration standards is prepared as shown in scheme I. This set of standards is spiked with working solution and then taken through the sample preparation procedure. A comparison of these calibrators with those prepared from the "Post-extraction" set allows for the evaluation of extraction recovery or losses that occur during the extraction procedure.

A Post-extract curve showing enhancement B Curve in pure solvent 45000 C Post-extract curve showing suppression D Pre-extract curve showing extraction recovery 40000 3 50 00 С 30000 B to A Enhancement [>]eak Area B to C Suppression 25000 A-C to D Extraction Recovery 20000 15000 (Peak area A/B -1)x(100) = % Enhancement 10000 (1- Peak area C/B)x(100) = % Suppression 5000 (D/C)x(100) or (D/A)x(100) = % Extraction Recovery 0 20 40 60 80 100 120 140 Concentration

Matrix Enhancement, Suppression, and Recovery Evaluation

4 Complete workflow for LC-MS/MS analysis


4.1 Mobile phase preparation

Mobile Phases	In	structions
1M ammonium formate		Weigh out 630 mg +/- 10 mg on a balance.
	2.	Transfer to 10 mL of 1:1 methanol:water mixture. Mix thoroughly to dissolve.
2 mM ammonium formate + 0.1% formic	1.	Combine 20 mL of methanol with 980 mL of water.
acid in 2% methanol	2.	Add 1 mL formic acid and 2 mL 1 M ammonium formate.
	3.	Mix and transfer to HPLC solvent bottle.
2 mM ammonium formate + 0.1% formic	1.	Combine 50 mL of water with 950 mL of acetonitrile.
acid in 95% acetonitrile	2.	Add 1 mL formic acid and 2 mL 1 M ammonium formate.
	3.	Mix and transfer to HPLC solvent bottle.

4.2 Chromatographic and MS conditions

LC-MS/MS	
Column	Ascentis RP-Amide, 2.1 mm x 10 cm, 3 um particles with guard column
Detection	LC-MS/MS dMRM Acquisition Mode
Instrumentation	Agilent 1290 series HPLC and autosampler with 6460 QQQ
Mobile phase A	2 mm ammonium formate, 0.1% formic acid, 2% methanol in Milli-Q water
Mobile phase B	2 mm ammonium formate, 0.1% formic acid, 5% Milli-Q water in acetonitrile

Standard injection of pesticides in hemp extract

4.3 Acquisition parameters for LC-MS/MS amenable pesticides in the California list:

HPLC gradient

Step	Time (min)	Mobile Phase A (%)	Mobile Phase B (%)	Flow rate (mL/min)
1	0.0	100	0	0.4
2	1.0	100	0	0.4
3	14.0	0	100	0.4
4	17.0	0	100	0.4
5	17.5	100	0	0.4
6	20.0	100	0	0.4

MS parameters

200
10
35
200
10
4000
500

4.3 Acquisition parameters for LC-MS/MS amenable pesticides in the California list:

Peaks	Compound	Retention Time (min)	MRM (m/z)	Collision Energy (eV)	Peaks	Compound	Retention Time (min)	MRM (m/z)	Collision Energy (eV)
1	Acephate	2.70	184.1 -> 143.1	0	31	Imidacloprid	5.67	256.2 -> 209.1	16
2	Acequinocyl	15.27	402.3 -> 343.2	4	32	Kresoxim-methyl	10.67	314.2 -> 267.2	0
3	Acetamiprid	6.01	223.1 -> 126.1	20	33	Malathion	10.15	331.2 -> 126.9	5
4	Aldicarb	6.57	116.1 -> 89.1	4	34	Metalaxyl	8.00	280.2 -> 220.2	10
5	Avermectin B1a	12.52	890.5 -> 305.3	28	35	Methiocarb	9.52	226.1 -> 169.1	0
6	Azoxystrobin	9.67	404.3 -> 372.2	10	36	Methomyl	4.27	162.9 -> 88.1	0
7	Bifenazate	10.19	301.1 -> 198.2	5	37	Mevinphos ‡	5.25	225.2 -> 127.1	16
8	Boscalid	10.00	343.2 -> 307.2	12	38	Myclobutanil	9.60	289.2 -> 70.0	15
9	Carbaryl	8.34	202.2 -> 145.1	0	39	Naled	8.71	380.8 -> 127.0	10
10	Carbofuran	7.70	222.2 -> 165.1	5	40	Oxamyl	4.03	237.2 -> 72.1	15
11	Chlorantraniliprole	9.30	484.0 -> 286.0	10	41	Paclobutrazol	9.25	294.1 -> 70.0	20
12	Chlorfenapyr	12.51	424.0 -> 368.0	12	42	Phosmet	9.69	317.9 -> 160.0	10
13	Chlorpyrifos	12.46	349.9 -> 97.0	41	43	Piperonyl butoxide	11.78	356.2 -> 177.1	5
14	Clofentezine	11.44	303.2 -> 138.1	10	44	Prallethrin II	11.40	301.2 -> 105.1	20
15	Coumaphos	11.31	363.2 -> 227.0	33	45	Propiconazole	10.29	342.2 -> 159.0	32
16	Daminozide	0.93	161.1 -> 143.0	8	46	Propoxur	7.59	210.1 -> 111.1	10
17	Diazinon	10.96	305.2 -> 169.1	20	47	Pyrethrins ##	11.45	373.3 -> 161.1	2
18	Dichlorvos	7.14	221.1 -> 109.1	12	48	Pyridaben	13.23	365.2 -> 147.2	20
19	Dimethoate	5.82	230.2 -> 199.1	0	49	Spinetoram*	8.41	748.5 -> 142.1	26
20	Dimethomorph	9.01	388.1 -> 301.1	15	50	Spinosad **	8.02	732.5 -> 142.1	28
21	Ethoprophos	9.67	243.2 -> 97.0	30	51	Spiromesifen	13.00	388.3 -> 273.3	6
22	Etofenprox	13.74	394.2 -> 177.2	10	52	Spirotetramat	9.26	374.2 -> 302.2	12
23	Etoxazole	12.63	360.1 -> 141.1	28	53	Spiroxamine	7.15	298.2 -> 144.1	16
24	Fenhexamid	10.64	302.2 -> 97.0	22	54	Tebuconazole	10.01	308.1 -> 70.0	40
25	Fenoxycarb	10.39	302.2 -> 88.1	15	55	Thiacloprid	6.84	253.2 -> 126.1	16
26	Fenpyroximate	12.52	422.3 -> 366.3	15	56	Thiamethoxam	4.88	292.2 -> 211.2	8
27	Flonicamid	4.77	230.2 -> 98.0	48	57	Trifloxystrobin	11.58	409.2 -> 186.1	12
28	Fludioxonil	10.33	229.1 -> 158.1	18		vinphos I			
29	Hexythiazox	12.49	353.2 -> 228.2	10	,	rethrin II			
30	Imazalil	6.46	297.2 -> 159.1	20		netoram J inosyn A			
					~~ OP				

**as Spinosyn A

4.5 Consistent results

Tabulated results for LC-MS/MS amenable pesticides in the California list:

Compound	R2	Recovery (%)				Peaks	Compound	R2	Recovery (%)			
Acephate	0.998	90	< 5	II	0.1	11	Chlorantraniliprole	0.998	71	6.1	II	10
Acequinocyl #	0.991	64	5.3	II	0.1	12	Chlorfenapyr	0.996	88	5.7	Ι	0.1
Acetamiprid	0.999	92	< 5	II	0.1	13	Chlorpyrifos	0.992	116	30	I	0.1
Aldicarb	0.999	85	< 5	Ι	0.1	14	Clofentezine	0.994	91	16	II	0.1
Avermectin B1a	0.998	95	9.8	II	0.1	15	Coumaphos	0.998	92	12.8	Ι	0.1
Azoxystrobin	0.996	92	< 5	II	0.1	16	Daminozide	0.997	12	5.4	I	0.1
Bifenazate	0.998	96	< 5	II	0.1	17	Diazinon	0.998	94	< 5	II	0.1
Boscalid	0.998	82	11.9	II	0.1	18	Dichlorvos	0.999	97	12.1	Ι	0.1
Carbaryl	0.997	92	< 5	II	0.5	19	Dimethoate	0.993	93	< 5	I	0.1
Carbofuran	1.000	91	< 5	Ι	0.1	20	Dimethomorph	1.000	93	< 5	II	2
	Compound Acephate Acequinocyl # Acetamiprid Aldicarb Avermectin B1a Azoxystrobin Bifenazate Boscalid Carbaryl Carbofuran	Acephate0.998Acequinocyl #0.991Acetamiprid0.999Aldicarb0.999Avermectin B1a0.998Azoxystrobin0.996Bifenazate0.998Boscalid0.998Carbaryl0.997	Compound R2 (%) Acephate 0.998 90 Acequinocyl # 0.991 64 Acetamiprid 0.999 92 Aldicarb 0.999 85 Avermectin B1a 0.998 95 Azoxystrobin 0.996 92 Bifenazate 0.998 96 Boscalid 0.997 92	Compound R2 (%) (n=3) Acephate 0.998 90 < 5	Compound R2 (%) (n=3) gory Acephate 0.998 90 < 5	Recovery (%) %RSD (n=3) Cate- gory Action Level µg/g Acephate 0.998 90 < 5	Compound R2 Recovery (%) %RSD Cate-level µg/g Peaks Acephate 0.998 90 < 5	Action CompoundR2Recovery (%)Action (n=3)PeaksCompoundAcephate0.99890< 5	Action CompoundR2Recovery (%)Action (n=3)PeaksCompoundR2Acephate0.99890< 5	Action CompoundR2Recovery (%)Action (m=3)Action ug/gPeaksCompoundR2Recovery (%)Acephate0.99890< 5	Action CompoundR2Recovery (%)%RSD (n=3)Cate- µg/gLevel µg/gPeaksCompoundR2Recovery (%)%RSD (n=3)Acephate0.99890< 5	Action CompoundR2Recovery (%)%RSD (n=3)Cate- goryLevel µg/gPeaksCompoundR2Recovery (%)%RSD (n=3)Cate- goryAcephate0.99890< 5

Peaks	Compound	R2	Recovery (%)	%RSD (n=3)	Cate- gory	Minimum Action Level µg/g
21	Ethoprophos	0.998	94	5.8	Ι	0.1
22	Etofenprox	0.995	97	4.8	Ι	0.1
23	Etoxazole	0.997	93	< 5	II	0.1
24	Fenhexamid	0.998	110	8.8	II	0.1
25	Fenoxycarb	0.996	92	< 5	Ι	0.1
26	Fenpyroximate	0.997	92	< 5	II	0.1
27	Flonicamid	0.996	101	14.8	II	0.1
28	Fludioxonil	0.991	100	29.1	II	0.1
29	Hexythiazox	0.995	96	9.3	II	0.1
30	Imazalil	1.000	85	< 5	Ι	0.1
31	Imidacloprid	0.998	89	6.6	II	5
32	Kresoxim-methyl	0.996	100	< 5	II	0.1
33	Malathion	0.995	88	10	II	0.5
34	Metalaxyl	0.999	93	< 5	II	2
35	Methiocarb	0.997	92	< 5	I	0.1
36	Methomyl	1.000	92	< 5	II	1
37	Mevinphos ‡	0.999	96	6.1	I	0.1
38	Myclobutanil	0.998	93	< 5	II	0.1
39	Naled	0.998	110	13.5	II	0.1
40	Oxamyl	1.000	89	< 5	II	0.5

Peaks	Compound	R2	Recovery (%)	%RSD (n=3)	Cate- gory	Minimum Action Level µg/g
41	Paclobutrazol	0.998	91	< 5	Ι	0.1
42	Phosmet	0.998	107	16.8	II	0.1
43	Piperonyl butoxide	0.997	102	< 5	II	3
44	Prallethrin II	0.995	105	9.3	II	0.1
45	Propiconazole	0.998	96	10.5	II	0.1
46	Propoxur	0.999	93	< 5	Ι	0.1
47	Pyrethrins ##	0.996	92	9.1	II	0.5
48	Pyridaben	0.996	96	< 5	II	0.1
49	Spinetoram *	0.999	82	5.5	II	0.1
50	Spinosad * *	0.999	84	< 5	II	0.1
51	Spiromesifen	0.996	91	< 5	II	0.1
52	Spirotetramat	0.998	87	9	II	0.1
53	Spiroxamine	0.999	81	< 5	Ι	0.1
54	Tebuconazole	0.998	94	6.7	II	0.1
55	Thiacloprid	0.999	93	< 5	Ι	0.1
56	Thiamethoxam	0.999	92	< 5	II	5
57	Trifloxystrobin	0.997	94	< 5	II	0.1

‡ As Mevinphos I

^{‡‡} as Pyrethrin II

* as Spinetoram J

**as Spinosyn A

Dwell time

Gain

10 ms

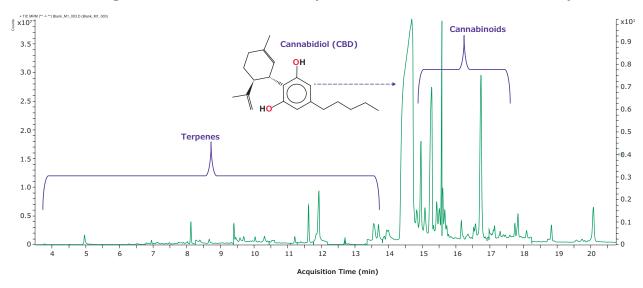
10

5 Complete workflow for the GC-MS/MS analysis

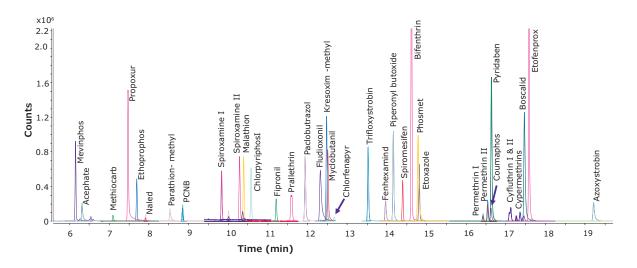
5.1 Preparation of analyte protectant solutions

Analyte protectants reduce active sites in the GC inlet and sample-path to ensure reproducible and consistent results when analyzing pesticides at low ppb levels.1

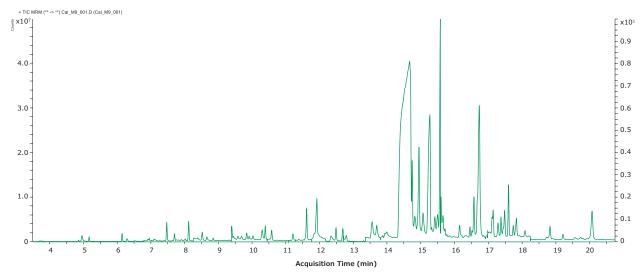
Step Instructions Weigh ~500 mg of D-Sorbitol into a 10 mL volumetric flask 1 and add 6 mL of LC-MS grade acetonitrile. Make up the volume using Milli-Q water (Solution A). 2 Weigh ~500 mg of L-Gulonic acid y-lactone into a 10 mL volumetric flask and add 5mL of LC-MS grade acetonitrile. Make up the volume using Milli-Q water (Solution B). 3 Add 2 mL of solution A with 4 mL of solution B in a 10 mL volumetric flask and bring to volume with LC-MS grade acetonitrile 4 Place into the appropriate autosampler vial for making sandwich injection with 0.2 μ L of air gap above and 0.2 μ L of the analyte protectant solution


5.2 GC-MS/MS instrument conditions

Gas Chromatogra	ph Conditions
Column	SLB®-5ms L \times I.D. 30 m \times 0.25 mm, df 0.25 μm
Detector	GC-MS/MS
Inlet	60°C for 0.35 min. and then 600°C/min to reach 300°C; Solvent Vent Mode: 5psi until 0.3 min, split vent flow 50 mL/min at 1.5 min; Air Cooled Pressure and Temperature Programmable Inlet
Column Temperature	60°C for 1 minute, then 40°C/min to reach 170°C. Hold for 0 min. then 10°C/min to reach 310°C. Hold at 310°C for 3 minutes
Flow	1.2 mL/min
Carrier gas	Helium
Liner	2 mm ID
Injection	$2\ \mu I$ – Solvent Vent Splitless injection with 0.2 uL Sandwich of Analyte Protectant Solution
Sample diluent	Acetonitrile
Standard solution	9 Matrix-Matched Calibration Standards of Pesticides Mix in Acetonitrile Extract
MS/MS Condition	
Tuning	AutoTune
Acquisition	MRM (EI mode)
Collision gas	Nitrogen @ 1.5 mL/min
Quench gas	Helium @ 2.25 mL/min
Solvent delay	3.5 min
MS source temperature	300°C
Quad Temperature	e 150°C
Electron Energy	70 eV


5.3 Acquisition parameters for GC-MS/MS amenable pesticides in California list:

Peaks	Compound	Retention Time (min)	MRM (m/z)	Collision Energy (eV)	Peaks	Compound	Retention Time (min)	MRM (m/z)	Collision Energy (eV)
1	Dichlorvos	5.178	184.9 -> 109.0	10	22	Kresoxim-methyl	12.479	116.0 -> 89.0	15
2	Mevinphos	6.151	127.0 ->	10	23	Myclobutanil	12.508	179.0 -> 125.1	10
3	Acephate	6.312	109.0	10	24	Chlorfenapyr	12.672	246.9 -> 227.0	15
4	Methiocarb	7.097	168.0 -> 109.1	15	25	Trifloxystrobin	13.536	116.0 -> 89.0	15
5	Propoxur	7.473	110.0 -> 63.0	25	26	Fenhexamid	13.969	177.0 -> 113.0	15
6	Ethoprop	7.699	157.9 -> 97.0	15	27	Piperonyl	14.161	176.1 ->	25
7	Naled	7.915	145.0 -> 109.0	15	28	butoxide Spiromesifen	14.398	103.1	5
8	PCNB	8.847	248.7 -> 213.9	15	29	Bifenthrin	14.616	254.2 181.2 ->	25
9	Parathion-methyl	9.405	125.0 -> 47.0	10				165.2	
10	Spiroxamine I	9.836	100.0 -> 58.1	10	30	Phosmet	14.789	160.0 -> 77.1	20
11	Spiroxamine II	10.288	100.0 -> 58.1	10	31	Etoxazole	14.812	141.0 -> 63.1	30
12	Malathion	10.393	126.9 -> 99.0	5	32	Permethrin I	16.425	162.9 -> 91.1	15
13	Chlorpyrifos	10.580	196.9 -> 169.0	15	33 34	Permethrin II Coumaphos	16.546 16.632	162.9 -> 91.1 361.9 ->	15 15
14	Fipronil	11.213	366.8 ->	25	51	countuprios	101052	109.0	10
14	•		212.8	25	35	Pyridaben	16.641	147.2 -> 117.1	20
15	Prallethrin	11.63	123.0 -> 81.0	10	36	Cyfluthrin I & II	17.151	198.9 ->	25
16	Captan	11.634	116.9 -> 82.0	30	50	Cynddinin I & II	17.151	170.1	25
17	Chlordane I	11.907	271.9 -> 236.9	15	37	Cypermethrin I II III IV	17.359	181.0 -> 152.1	25
18	Paclobutrazol	11.944	236.0 -> 125.1	10	38	Boscalid	17.465	140.0 -> 112.0	10
19	Chlordane I & II	12.026	375.0 -> 265.8	25	39	Etofenprox	17.584	163.0 -> 107.1	20
20	Chlordane II	12.142	375.0 -> 265.8	25	40	Azoxystrobin	19.210	344.1 -> 329.0	15
21	Fludioxonil	12.325	248.0 -> 127.1	30					


TIC MRM chromatogram of GC-MS/MS amenable pesticides in California list blank sample extract

MRM extracted chromatogram of GC-MS/MS amenable pesticides in the California list -Standard at 200 ppb

TIC MRM chromatogram of GC-MS/MS amenable pesticides in the California list - Standard at 200 ppb

5.5 Consistent results

Tabulated results for GC-MS/MS amenable pesticides in California list:

Peaks	Compound	R2	Recovery (%)	%RSD (n=3)	Cate- gory	Minimum Action Level µg/g	Peaks	Compound	R2	Recovery (%)	%RSD (n=3)	Cate- gory	Minimum Action Level µg/g
1	Dichlorvos	0.994	96	4.6	Ι	0.1	22	Kresoxim-	0.999	101	1.8	II	0.1
2	Mevinphos	0.998	102	4.4	Ι	0.1		methyl					
3	Acephate	0.998	103	3.6	II	0.1	23	Myclobutanil	0.999	102	3.8	II	0.1
4	Methiocarb	0.985	103	3.3	Ι	0.1	24	Chlorfenapyr	0.999	98	5.3	Ι	0.1
5	Propoxur	0.997	102	4.3	Ι	0.1	25	Trifloxystrobin	0.999	101	1.8	Ι	0.1
6	Ethoprop	0.997	103	1.3	I	0.1	26	Fenhexamid	0.998	100	1.7	Ι	0.1
7	Naled	0.995	99	4.9	II	0.1	27	Piperonyl butoxide	0.997	102	3.2	II	0.1
8	PCNB	0.999	100	3	II	0.1	28	Spiromesifen	0.999	103	2.2	II	0.1
9	Parathion- methyl	0.998	105	11.2	Ι	0.1	29	Bifenthrin	0.999	101	2	II	3
10	Spiroxamine I	0.996	105	2.5	I	0.1	30	Phosmet	0.999	100	6	II	0.1
11	Spiroxamine	0.998	104	3.4	I	0.1	31	Etoxazole	0.999	102	1.7	II	0.1
	II				_		32	Permethrin I	0.997	102	0.4	II	0.5
12	Malathion	0.999	101	2.4	II	0.5	33	Permethrin II	0.998	100	2.2	II	0.5
13	Chlorpyrifos	0.999	102	0.6	Ι	0.1	34	Permethrin I	0.998	102	1.2	II	0.5
14	Fipronil	0.999	99	1.1	Ι	0.1		& II					
15	Prallethrin	0.999	99	6	II	0.1	35	Coumaphos	0.998	98	1	Ι	0.1
16	Captan	0.988	100	1	II	0.7	36	Pyridaben	0.998	100	2.4	II	0.1
17	Chlordane I	0.995	104	6.8	Ι	0.1	37	Cyfluthrin I & II	0.999	96	2.3	II	2
18	Paclobutrazol	0.999	101	2.6	Ι	0.1	38	Cypermethrin	0.997	99	2.1	II	1
19	Chlordane I	0.998	103	0.6	Ι	0.1		I II III IV					
	& II	-					39	Boscalid	0.999	101	3.3	II	0.1
20	Chlordane II	0.997	101	0.4	I	0.1	40	Etofenprox	0.998	101	0.2	Ι	0.1
21	Fludioxonil	0.999	102	1.9	II	0.1	41	Azoxystrobin	0.998	102	7.5	II	0.1
							-						

6 Tabulated results for all the pesticides in the California list:

	GC-MS/MS	LC-MS/MS
Analyte	MAL Met?	MAL Met?
Dichlorvos	YES	YES
Mevinphos	YES	YES
Acephate	YES	YES
Methiocarb	YES	YES
Propoxur	YES	YES
Ethoprop	YES	YES
Naled	YES	YES
PCNB	YES	NO
Parathion-methyl	YES	NO
Spiroxamine I	YES	YES
Spiroxamine II	YES	YES
Malathion	YES	YES
Chlorpyrifos	YES	YES
Fipronil	YES	YES
Prallethrin	YES	YES
Captan	YES	YES
Chlordane I	YES	NO
Paclobutrazol	YES	YES
Chlordane I & II	YES	NO
Chlordane II	YES	NO

	GC-MS/MS	LC-MS/MS
Analyte	MAL Met?	MAL Met?
Fludioxonil	YES	YES
Tebuconazole	NO	YES
Carbofuran	NO	YES
Clofentezine	NO	YES
Dimethomorph	NO	YES
Flonicamid	NO	YES
Fenoxycarb	NO	YES
Carbaryl	NO	YES
Avermectin	NO	YES
Daminozide	NO	YES
Dimethoate	NO	YES
Hexythiazox	NO	YES
Imazalil	NO	YES
Metalaxyl	NO	YES
Fenproximate	NO	YES
Kresoxim-methyl	YES	YES
Myclobutanil	YES	YES
Chlorfenapyr	YES	YES
Trifloxystrobin	YES	YES
Fenhexamid	YES	YES
Piperonyl butoxide	YES	YES

AnalyteMAL Met?MAL Met?SpiromesifenYESYESBifenthrinYESYESPhosmetYESYESEtoxazoleYESYESPermethrinsYESYESPyrethrinsNOYESPyrethrinsNOYESCoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESAcequinocylNOYESAcequinocylNOYES		GC-MS/MS	LC-MS/MS
BifenthrinYESYESPhosmetYESYESPhosmetYESYESEtoxazoleYESYESPermethrinsYESYESThiaclopridNOYESPyrethrinsNOYESCoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESYESBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESDiazinonNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Analyte	MAL Met?	MAL Met?
PhosmetYESYESEtoxazoleYESYESPermethrinsYESYESThiaclopridNOYESPyrethrinsNOYESCoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESYESBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Spiromesifen	YES	YES
EtoxazoleYESYESPermethrinsYESYESThiaclopridNOYESPyrethrinsNOYESCoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESYESBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram JNOYESSpinotaram LNOYESSpinosyn ANOYESThiamethoxamNOYESThiamethoxamNOYES	Bifenthrin	YES	YES
PermethrinsYESYESThiaclopridNOYESPyrethrinsNOYESCoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram JNOYESSpinotarm LNOYESSpinosyn ANOYESThiamethoxamNOYESThiamethoxamNOYES	Phosmet	YES	YES
ThiaclopridNOYESPyrethrinsNOYESCoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Etoxazole	YES	YES
PyrethrinsNOYESCoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESAcetamipridNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Permethrins	YES	YES
CoumaphosYESYESPyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESAcetamipridNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Thiacloprid	NO	YES
PyridabenYESYESCyfluthrin I & IIYESNOCypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESAcetamipridNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Pyrethrins	NO	YES
Cyfluthrin I & IIYESNOCypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESAcetamipridNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESChlorantraniliproleNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Coumaphos	YES	YES
Cypermethrin I II III IVYESNOBoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESAcetamipridNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram JNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Pyridaben	YES	YES
BoscalidYESYESEtofenproxYESYESAzoxystrobinYESYESAzetamipridNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Cyfluthrin I & II	YES	NO
EtofenproxYESYESAzoxystrobinYESYESAzetamipridNOYESDiazinonNOYESAldicarbNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram JNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Cypermethrin I II III IV	YES	NO
AzoxystrobinYESYESAcetamipridNOYESDiazinonNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Boscalid	YES	YES
AcetamipridNOYESDiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESMethomylNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Etofenprox	YES	YES
DiazinonNOYESAldicarbNOYESSpirotetramatNOYESImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESThiamethoxamNOYES	Azoxystrobin	YES	YES
AldicarbNOYESSpirotetramatNOYESImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESMethomylNOYESPropiconazoleNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Acetamiprid	NO	YES
SpirotetramatNOYESImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESMethomylNOYESPropiconazoleNOYESSpinetoram JNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Diazinon	NO	YES
ImidaclopridNOYESChlorantraniliproleNOYESBifenazateNOYESMethomylNOYESPropiconazoleNOYESSpinetoram JNOYESSpinoteram LNOYESOxamylNOYESThiamethoxamNOYES	Aldicarb	NO	YES
ChlorantraniliproleNOYESBifenazateNOYESMethomylNOYESPropiconazoleNOYESSpinetoram JNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Spirotetramat	NO	YES
BifenazateNOYESMethomylNOYESPropiconazoleNOYESSpinetoram JNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Imidacloprid	NO	YES
MethomylNOYESPropiconazoleNOYESSpinetoram JNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Chlorantraniliprole	NO	YES
PropiconazoleNOYESSpinetoram JNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Bifenazate	NO	YES
Spinetoram JNOYESSpinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Methomyl	NO	YES
Spinoteram LNOYESSpinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Propiconazole	NO	YES
Spinosyn ANOYESOxamylNOYESThiamethoxamNOYES	Spinetoram J	NO	YES
OxamylNOYESThiamethoxamNOYES	Spinoteram L	NO	YES
Thiamethoxam NO YES	Spinosyn A	NO	YES
	Oxamyl	NO	YES
Acequinocyl NO NO	Thiamethoxam	NO	YES
	Acequinocyl	NO	NO

MAL : Minimum Action Level

7. Conclusion

A method has been developed to quantify the California list of pesticides from dried cannabis, as per the state requirements, by using a combination of both LC-MS/ MS and GC-MS/MS. A single flowthrough solid-phase extraction is used to prepare the samples for both instrumental techniques. Linearity, recovery, and precision are demonstrated using dried hemp and schemes for performing the calibration, extraction recovery, and suppression/ enhancement studies are provided.

A total of 57 pesticides are reported using LC-MS/ MS and 40 using GC-MS/MS. Due to the high levels of interfering CBDA, acequinocyl was not detected at minimum levels with the existing instrumentation. All other pesticides are reported using one or the other analytical technique to meet or exceed the current California regulatory limits for each category.

As seen from the illustrations and results, the use of Supelco[®] chromatography solvents, consumables, supplies, and analytical reagents in combination with GC-MS/MS and LC-MS/MS instrumentation provides an efficient way to analyze cannabis for the presence of pesticides. The minimum action levels of 0.1 μ g/g (100 ppb) for California are easily achievable for most of the compounds. Obtaining consumables and reagents

from one supplier ensures that the time is well spent in analyzing samples rather than evaluating multiple sources for analytical supplies.

The GC-MS/MS instrumentation is used here as a supplement to LC-MS/MS in order to detect all California cannabis pesticides at their required minimum action levels. Millipore Sigma does not endorse any particular instrumentation and aims to provide solutions for sample preparations and chromatographic challenges of laboratories regardless of the instrument used.

In this workflow we have presented:

- Complete details for the analysis of the California pesticides by GC-MS/MS and LC-MS/MS
- Step-by-step procedures for calibrator and sample preparation
- Methods for the evaluation of suppression and extraction recovery
- Instructions for the preparation and use of analyte protectants in GC-MS/MS

7.1 Approaches for Further Resolution Gains

This work was a continuation of our earlier studies examining the Oregon list of pesticides. It offers a solution for the issue of poor peak shape of weakly retained, early eluting analytes. However, there are other options available that may permit use of our Ascentis® Express Fused-Core® columns to provide overall better peak shape and resolution.

The issue for early eluting analytes is the high solvent strength of the sample following extraction, versus the solvent strength of the initial mobile phase. The approach taken here was to use a guard column to insert a porous bed into the flow path to provide a space for sample mixing with the solvent. This same approach can be used with our Fused-Core[®] column technology.

Approaches that can be explored to leverage the Fused-Core[®] technology:

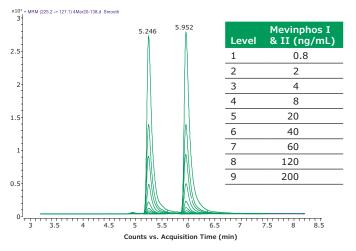
- Coupling a high-resolution Ascentis Express analytical column with a porous particle guard column of lower hydrophobicity of which there are several options available.
- Sample dilution with a small amount of water. This would entail trying a series of dilutions to determine which affords desirable improvement in the shape of early eluting peaks. In order to keep sample mass constant, the sample volume would need to be increased by the same factor as used in dilution. Additionally, be mindful of issues around analyte solubility as cannabinoids could precipitate out of solution. Utilizing more sensitive LC/MS/MS detection can also permit smaller sample volumes which can ameliorate the problem.

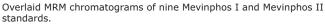
Featured and Related Materials

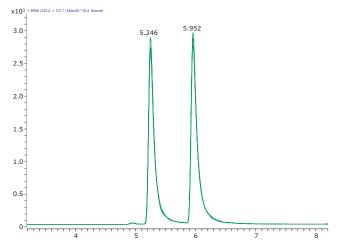
LC-MS/MS Consumables

	Product Description	Mfr. No.	Thomas No.
ample Preparation			
	Discovery C18 SPE Cartridges, 500 mg, 6 mL	52604-U	21A00L820
S OSC-18			
PLC Columns			
	Ascentis [®] RP-Amide 100x2.1 mm, 3 µm	565301-U	
	Ascentis Express Guard Cartridge Holder	53500-U	1179R66
	Ascentis [®] Express RP-Amide, 2.7 µm Guard Cartridge	53514-U	
cessories			
	50 mL Centrifuge Tubes:	T2318	
	15 mL centrifuge tube	T1818	
	BenchMixer Shaker/Vortexer	Z742705	
	BRAND Seripettor Bottle-top Dispenser	Z627577	
	Certified Vial Kit – Amber (Autosampler vials)	29653-U	21A00M258
	Guard frit with holder	803410	
	Replacement frits	803411	
	Pipette 2-20 µL	BR705872-1EA	
	Pipette 20-200 µL	BR705878-1EA	
0	Pipette 100-1000 µL	BR705880-1EA	
	Pipette tips 2-20 µL box	Z740102-480EA	
	Pipette tips 2-200 µL box	Z740106-480EA	
	Pipette tips 50-1000 µL box	Z740108-480EA	
ater, Solvents and Chemi	cals		
	Acetonitrile Solution (0.1% formic acid)	1.59002	
	Water Solution (0.1% formic acid)	159013.4	
	Ammonium Formate, LiChropur	70221	C989U89
	Formic Acid, LC-MS LiChropur	5330020050	C820P83
	Methanol	106035	
	Ultrapure water from Milli-Q $^{\ensuremath{\$}}$ system or bottled water	Milli-Q [®] IQ 7005 or 1.15333	or

GC-MS/MS Consumables

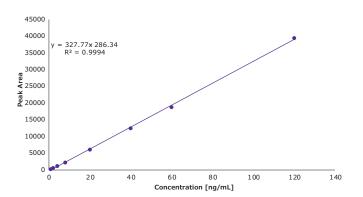

	Product Description	Mfr. No.	Thomas No.
Sample Preparation			
S 050-18	Discovery C18 SPE Cartridges, 500 mg, 6 mL	52604-U	21A00L820
GC Columns			
\bigcirc	SLB®-5ms Capillary GC Column L \times I.D. 30 m \times 0.25 mm, df 0.25 μm	28471-U	21A00L230
Accessories			
	Inlet Septa	28676-U	


		Inlet Septa	28676-U	
GC Inlet Liner GC Vials and Caps: 2 mL Amber Vials and PFTE GC Syringe: Depending on Autosampler Make and BenchMixer Shaker/Vortexer Pipette 2-20 µL Pipette 20-200 µL Pipette 100-1000 µL Pipette tips 2-20 µL box Pipette tips 2-20 µL box Pipette tips 50-1000 µL box S0 mL Centrifuge Tubes Water, Solvents and Chemicals Acetonitrile	GC Inlet Liner	2048505		
		GC Vials and Caps: 2 mL Amber Vials and PFTE Caps	29654-U	21A00M259
C.C.	E.	GC Syringe: Depending on Autosampler Make and Model		
		BenchMixer Shaker/Vortexer	Z742705	
		Pipette 2-20 µL	BR705872-1EA	
	100	Pipette 20-200 µL	BR705878-1EA	
0.	2	Pipette 100-1000 µL	BR705880-1EA	
		Pipette tips 2-20 µL box	Z740102-480EA	
		Pipette tips 2-200 µL box	Z740106-480EA	
		Pipette tips 50-1000 µL box	Z740108-480EA	
		50 mL Centrifuge Tubes	T2318	
Water, Solvents	and Chemica	ls		
*	.mu	Acetonitrile	1.00017	C992G94
	Ó	Ultrapure water from Milli-Q [®] system	Milli-Q [®] IQ 7005	

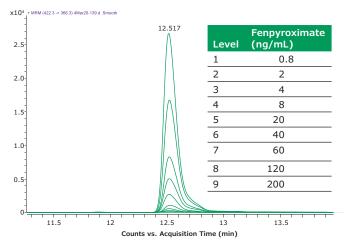

Addendum: Detection and Calibration

LC-MS/MS Pesticides: Detection and calibration

Mevinphos I & II LC-MS/MS detection and calibration



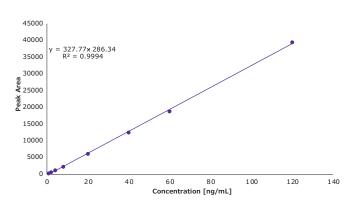
Three injections of 120 ng/mL Mevinphos I & II standard solution.


Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
37	Mevinphos I	5.25	225.2->127.1	10 ms	16	10
37	Mevinphos II	5.95	225.2->127.1	10 ms	16	10


Standard Repeatability (120 ng/mL/)	
STD 1	18954
STD 2	19710
STD 3	19212
Mean	19292
Standard Deviation	384.296
RSD (%)	1.99

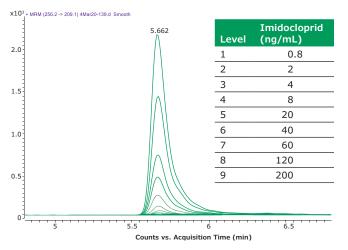
Concentration (ng/mL)	Peak Area
0.8	268
2	607
4	1293
8	2505
20	6335
40	12806
60	20126
120	38160
LOD	0.3
LOQ	0.8 ppb

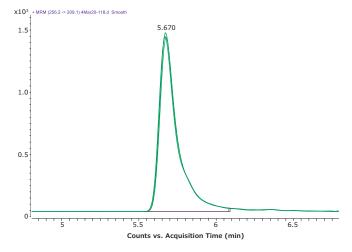
Fenpyroximate LC-MS/MS detection and calibration



Overlaid MRM chromatograms of nine Fenpyroximate standards.

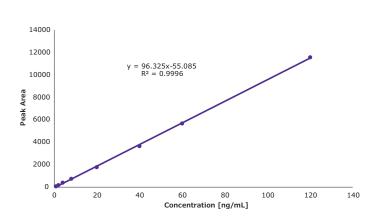
Three injections of 120 ng/mL Fenpyroximate standard solution.


Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
26	Fenpyroximate	12.52	422.3 -> 366.3	10 ms	15	10

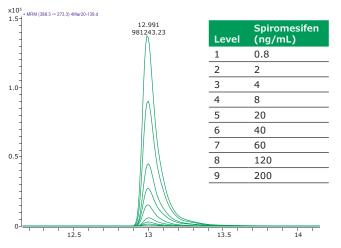

Standard Repeatability (120 ng/mL/)	
STD 1	148573
STD 2	150378
STD 3	147517
Mean	148822.7
Standard Deviation	1446.748
RSD (%)	0.97

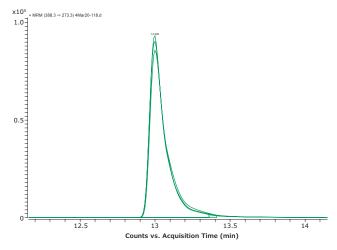
Concentration (ng/mL)	Peak Area
0.8	1817
2	4827
4	9932
8	19458
20	45033
40	90386
60	140927
120	266965
200	444136
LOD	0.3
LOQ	0.8 ppb

Imidacloprid LC-MS/MS Detection and Calibration


Overlaid MRM chromatograms of nine Imidacloprid standards.

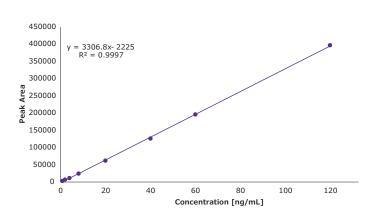
Three injections of 120 ng/mL Imidacloprid standard solution.

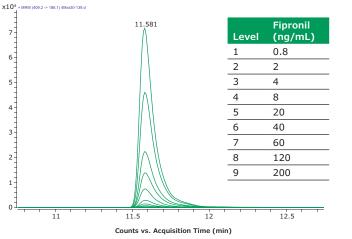

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
31	Imidacloprid	5.67	256.2 -> 209.1	10 ms	16	10


Standard Repeatability (120 r	ng/mL/)
STD 1	11589
STD 2	11673
STD 3	11396
Mean	11552.67
Standard Deviation	142.0293
RSD (%)	1.23

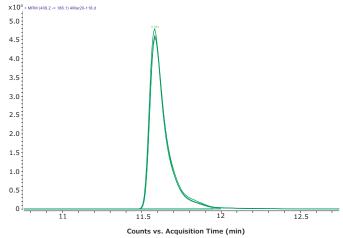
Concentration (ng/mL)	Peak Area
0.8	76
2	179
4	397
8	742
20	1789
40	3664
60	5673
120	11583
LOD	0.3
LOQ	0.8 ppb

Spiromesifen LC-MS/MS Detection and Calibration


Overlaid MRM chromatograms of nine Spiromesifen standards.

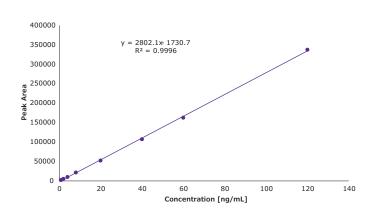

Three injections of 120 ng/mL Spiromesifen standard solution.

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
51	Spiromexifen	13	388.3 -> 273.3	10 ms	6	10

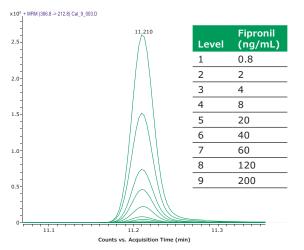

Standard Repeatability (120 ng/mL/)		
STD 1	664843	
STD 2	676135	
STD 3	665925	
Mean	668967.7	
Standard Deviation	6230.624	
RSD (%)	0.93	

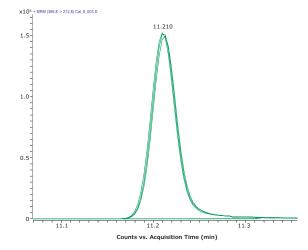
Concentration (ng/mL)	Peak Area
0.8	2529
2	6537
4	11422
8	24290
20	61865
40	125957
60	195709
120	396466
LOD	0.3
LOQ	0.8 ppb

TrifloXystrobin LC-MS/MS Detection and Calibration


Overlaid MRM chromatograms of nine Trifloxystrobin standards.

Three injections of 120 ng/mL Trifloxystrobin standard solution.

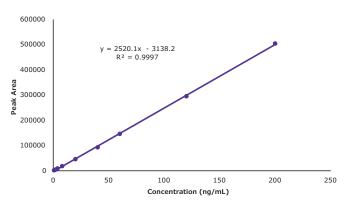

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
57	Trifloxystrobin	11.58	409.2 -> 186.1	10 ms	12	10


Standard Repeatability (120 ng/mL/)		
STD 1	329809	
STD 2	337894	
STD 3	332280	
Mean	333327.7	
Standard Deviation	4143.068	
RSD (%)	1.24	

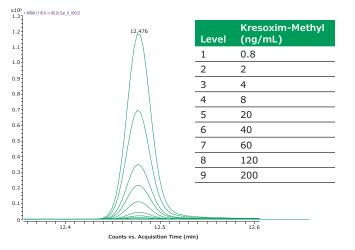
Concentration (ng/mL)	Peak Area
0.8	2240
2	5560
4	10348
8	21786
20	52622
40	107386
60	162679
120	337507
LOD	0.3
LOQ	0.8 ppb

FIPRONIL GC-MS/MS DETECTION AND CALIBRATION

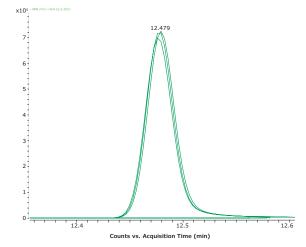
Overlaid MRM chromatograms of nine Fipronil standards.


Three injections of 120 ng/mL Fipronil standard solution.

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
14	Firpronil	11.213	366.8 -> 212.8	10 ms	25	10

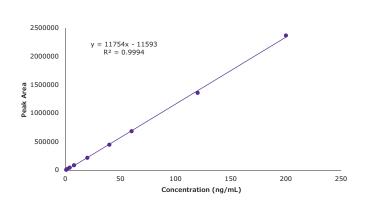

Standard Repeatability (120 ng/mL/)		
STD 1	289996	
STD 2	295452	
STD 3	295399	
Mean	293615.7	
Standard Deviation	3134.8	
RSD (%)	1.1	

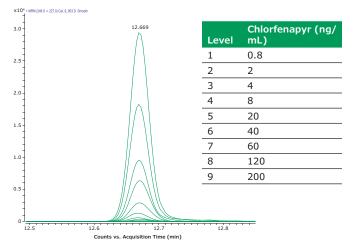
Linearity, LOD and LOQ


Concentration (ng/mL)	Peak Area
0.8	1638
2	4567
4	8905
8	17998
20	45416
40	93201
60	145952
120	295452
200	504777
LOD	0.3
LOQ	0.8 ppb

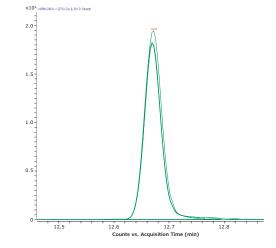
Calibration curve for Fipronil standards from 0.8 $\rm ng/mL$ to 200 $\rm ng/mL$

Kresoxim-methyl GC-MS/MS DETECTION AND CALIBRATION


Overlaid MRM chromatograms of nine Kresoxim-Methyl standards.


Three injections of 120 ng/mL Kresoxim-Methyl standard solution.

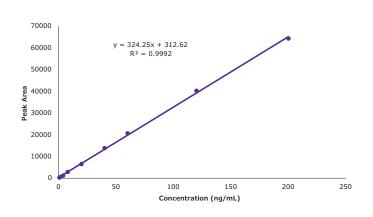
Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
22	Kresoxim-Methyl	12.479	366.8 -> 212.8	10 ms	25	10


Standard Repeatability (120 ng/mL/)		
STD 1	1369928	
STD 2	1357719	
STD 3	1322181	
Mean	1349942.7	
Standard Deviation	24805.2	
RSD (%)	1.8	

Concentration (ng/mL)	Peak Area
0.8	7911
2	23306
4	46173
8	86167
20	216345
40	449742
60	685807
120	1357719
200	2368236
LOD	0.3
LOQ	0.8 ppb

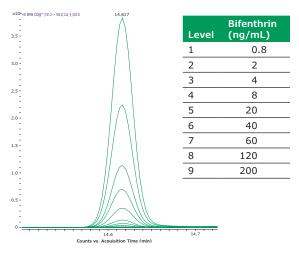
CHLORFENAPYR GC-MS/MS DETECTION AND CALIBRATION

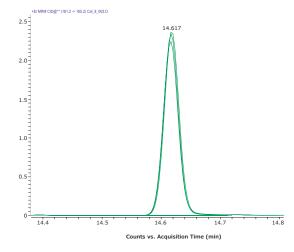
Overlaid MRM chromatograms of nine Chlorfenapyr standards.


Three injections of 120 ng/mL Chlorfenapyr standard solution.

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
24	Chlorfenapyr	12.672	246.9 -> 227.0	10 ms	15	10

Standard Repeatability (120	ng/mL/)
STD 1	43673
STD 2	39620
STD 3	40201
Mean	41164.7
Standard Deviation	2191.6
RSD (%)	5.3

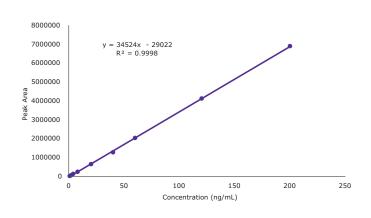

Linearity, LOD and LOQ


Concentration (ng/mL)	Peak Area
0.8	292
2	663
4	1179
8	2785
20	6458
40	13785
60	20661
120	40201
200	64259
LOD	0.3
LOQ	0.8 ppb

Calibration curve for Chlorfenapyr standards from 0.8 $\mbox{ng/mL}$ to 200 $\mbox{ng/mL}$

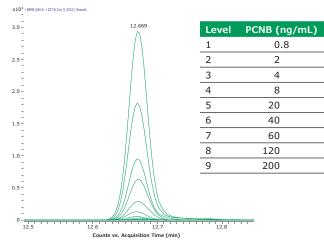
BIFENTHRIN GC-MS/MS DETECTION AND CALIBRATION

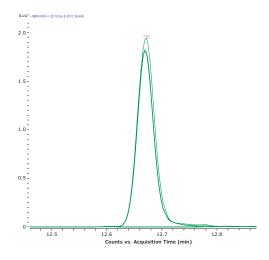
Overlaid MRM chromatograms of nine Bifenthrin standards.


Three injections of 120 ng/mL Bifenthrin standard solution.

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
29	Bifenthrin	14.617	181.2 -> 165.2	10 ms	25	10

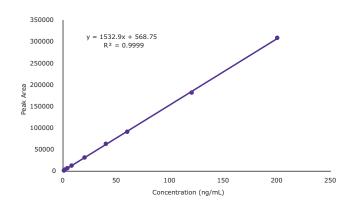
Standard Repeatability (120 ng/mL/)		
STD 1	4216546	
STD 2	4117505	
STD 3	4285451	
Mean	4206500.7	
Standard Deviation	84422.4	
RSD (%)	2	


Linearity, LOD and LOQ


Concentration (ng/mL)	Peak Area
0.8	24322
2	61097
4	132198
8	250318
20	647715
40	1278722
60	2038589
120	4117505
200	6889862
LOD	0.3
LOQ	0.8 ppb

Calibration curve for Bifenthrin standards from 0.8 ng/mL to 200 ng/mL

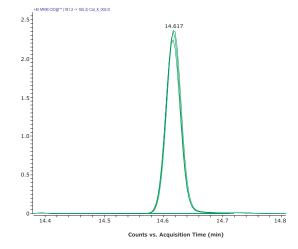
Overlaid MRM chromatograms of nine PCNB standards.


Three injections of 120 ng/mL PCNB standard solution.

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
8	PCNB	8.847	248.7 -> 213.9	10 ms	15	10


Standard Repeatability (120 ng/mL/)		
STD 1	172599	
STD 2	173017	
STD 3	182041	
Mean	175885.7	
Standard Deviation	5334.8	
RSD (%)	3	

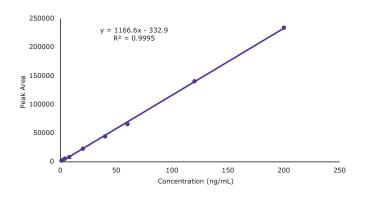
Linearity, LOD and LOQ


Concentration (ng/mL)	Peak Area
0.8	1516
2	3684
4	7022
8	13024
20	31499
40	63399
60	91490
120	182041
200	308606
LOD	0.3
LOQ	0.8 ppb

Calibration curve for PCNB standards from 0.8 ng/mL to 200 ng/mL

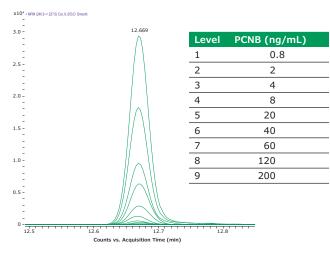
Cyfluthrin I & II GC-MS/MS DETECTION AND CALIBRATION

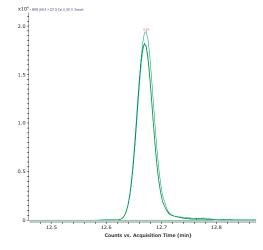
Overlaid MRM chromatograms of nine Cyfluthrin I & II standards.


Three injections of 120 ng/mL Cyfluthrin I & II standard solution.

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
37	Cyfluthrin I	17.086	198.9->170.1	10 ms	25	10
37	Cyflythrin II	17.122	198.9->170.1	10 ms	25	10

Standard Repeatability (120 ng/mL/)		
STD 1	128772	
STD 2	130570	
STD 3	134731	
Mean	131357.7	
Standard Deviation	3056.6	
RSD (%)	2.3	

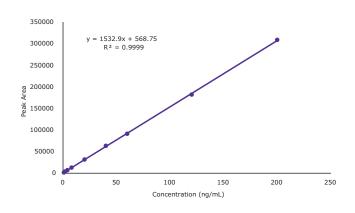

Linearity, LOD and LOQ


Concentration (ng/mL)	Peak Area
0.8	2252
2	3110
4	5650
8	8611
20	23070
40	44494
60	65921
120	140570
200	233894
LOD	0.3
LOQ	0.8 ppb

Calibration curve for Cyfluthrin I & II standards from 0.8 ng/mL to 200 ng/mL

PCNB GC-MS/MS DETECTION AND CALIBRATION

Overlaid MRM chromatograms of nine PCNB standards.


Three injections of 120 ng/mL PCNB standard solution.

Peaks	Analyte	Retention Time (min)	MRM (m/z)	Dwell time	Collision Energy (eV)	Gain
8	PCNB	8.847	248.7 -> 213.9	10 ms	15	10

Standard Repeatability (120 ng/mL/)		
STD 1	172599	
STD 2	173017	
STD 3	182041	
Mean	175885.7	
Standard Deviation	5334.8	
RSD (%)	3	

Linearity, LOD and LOQ

Concentration (ng/mL)	Peak Area
0.8	1516
2	3684
4	7022
8	13024
20	31499
40	63399
60	91490
120	182041
200	308606
LOD	0.3
LOQ	0.8 ppb

Calibration curve for PCNB standards from 0.8 ng/mL to 200 ng/mL

Notes:		

Notes:		

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved. MilliporeSigma, the vibrant M and Supelco are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

Lit.No. MS_AN7780EN Ver. 1.0 35267 06/2021 REV 8/5/22

ThomasSci.com 833.544.SHIP (7447) CustomerService@thomassci.com

